
Knipp Medien und Kommunikation GmbH

Knipp RRI Toolkit
Overview

Table of Contents

1. Introduction..2
1.1. Purpose...2
1.2. Prerequisites...2
1.3. Licensing...2

2. Concepts...2
2.1. Requests and Responses..2
2.2. Message Classes..3
2.3. DomainData and ContactData Classes...3
2.4. RegistryChannel and ChannelFactory Interface...4
2.5. Port Interface..4
2.6. Error Handling..5
2.7. Inner Working...5

3. Using the Toolkit...6
3.1. Required Steps..6
3.2. Creating a Channel Factory..6
3.3. Creating a Port..6
3.4. Working with the Port...7
3.5. Shutting Down..7

4. Miscellaneous...7
4.1. Test Class..7
4.2. DebugChannelFactory & DebugPort Classes...8
4.3. Idle TCP Connections...8

Document History

Version Date Author Comments
1.0 2005-04-29 Klaus Malorny Initial creation.
1.1 2005-05-26 Klaus Malorny Updated section 2.1, added sections 2.6

and 4.2.
1.2 2005-08-12 Klaus Malorny Updated section 1.2
1.3 2006-07-19 Klaus Malorny Updated properties example (3.2), added

section 4.3
1.4 2019-05-03 Klaus Malorny Minor updates of text and graphics

Knipp RRI Toolkit Page 1/8

Knipp Medien und Kommunikation GmbH

1. Introduction

1.1. Purpose

The toolkit implements an interface to DENIC’s Real-time Registry Interface
(RRI) for the Java programming language. It represents DENIC requests and re-
sponses, contact and domain data as well as messages as Java objects, allowing
an easy access to the registry functionality. For the communication, both key-
value and XML representations are supported at the user’s discretion. The tool-
kit supports TCP communication via SSL/TLS encryption. As the communica-
tion interface is thread-safe, it enables multi-threaded access to the registry with-
out effort.

1.2. Prerequisites

The toolkit makes use of Java 8 constructs. As such, Java 8 or a later version of
Java is required to compile and use the toolkit. If there is a need to rebuild the
library, Apache Ant 1.6 or later is required.

Although the toolkit fully supports Internationalized Domain Names (IDN), it
does not provide any means for the conversion between the IDN and its Puny-
code representation by itself. While Java itself provides means for the conversion
in the form of the java.net.IDN class, it should be noted that at the time of
writing (at least up to Java 12), this class only supports the IDNA2003 standard.
However, DENIC uses the IDNA2008 standard, which behaves differently espe-
cially in the handling of the “German double s” character. As such, it is recom-
mended to use a third party library for this purpose. The ICU library1 is known to
work well, but other libraries may also exist and be suitable.

In case that you explicitly include the XML parser Apache Xerces in the class
path of your Java runtime environment, it may be required to update it to ver-
sion 2.7 at least, which fully supports all of the JAXP 1.3 classes.

1.3. Licensing

The toolkit is published under the GNU Lesser General Public License 2.1. This
license allows the modification of the toolkit as well as the use of the toolkit for
commercial applications. Please refer to the license for details.

2. Concepts

2.1. Requests and Responses

Each individual request and response is implemented as a separate class. They
share common base classes. There is a one-to-one correspondence between the
request and response classes to have a full symmetry, although most DENIC re-
quests do not return any additional data besides the standard information
(transaction IDs, result, result messages).

1 http://site.icu-project.org/

Knipp RRI Toolkit Page 2/8

Knipp Medien und Kommunikation GmbH

While this concept is straight-forward, two notes must be added: First, to allow
object-oriented access to the different Response subclasses, the class imple-
ments the well-known Visitor pattern in conjunction with the ResponseVisitor
interface.

Second, the Request class has a method called execute, which sends itself to
the given Port instance and returns a Response object. Each subclass overrides
this method to return an instance of the corresponding Response subclass.

2.2. Message Classes

For each message type a corresponding subclass of Message exists. The Message
class defines a getType method that returns the actual type of the message.
Also, the class implements the Visitor pattern.

2.3. DomainData and ContactData Classes

The DomainData and ContactData classes are used to store domain resp. con-
tact information for both requests and responses. This allows data to be read
from the registry via an Info request, modified and sent back to the registry via
an Update request.

In some cases, the ContactData class contains nothing more than the handle of
the contact. This is intentional.

Knipp RRI Toolkit Page 3/8

Basic Principle of the

Request and Re-

sponse class hierar-

chies

Request

+ getClientTxnID ()
+ execute() : Response

LoginRequest

+ execute () : LoginResponse
+ setUser ()
+ setPassword ()

LoginResponse

+ accept (ResponseVisitor)

Response

+ accept (ResponseVisitor)
+ getClientTxnID ()
+ getServerTxnID ()
+ getResult()
+ getResultMessages ()

DomainInfoRequest

+ execute () : DomainInfoResponse
+ setAuthInfo ()
+ …

QueueReadRequest

+ execute () : QueueReadResponse
+ setTypeLimitation ()

DomainInfoResponse

+ accept (ResponseVisitor)
+ getDomain ()

QueueReadResponse

+ accept (ResponseVisitor)
+ getMessage ()

Knipp Medien und Kommunikation GmbH

The DomainData class uses an inner class (Ref) to associate the contacts with
their roles. It also manages instances of the DnsEntry class and its subclasses
to represent the DNS configuration of the domain.

The DnsEntry class implements the Visitor pattern also.

2.4. RegistryChannel and ChannelFactory Interface

These two interfaces are used for the abstraction of the communication channel
to the registry. The RegistryChannel contains send and receive methods on a
binary level. The ChannelFactory is an interface to a class that is capable of cre-
ating new channels.

TcpChannelFactory is a class which implements the ChannelFactory interface
for TCP connections. The class takes the initialization parameters from an in-
stance of the TcpParams class.

2.5. Port Interface

Since the RegistryChannel operates on a binary basis and also does not pro-
vide means to be accessed from multiple threads in parallel, a different “high-
level” interface called Port exists that is meant to be used by the application de-
veloper. It serves as a facade to the conversion process from the request objects
to the binary data that is sent to the registry as well as the reverse direction from
the received binary data to the response objects. In addition, it takes care about
parallel access from multiple threads, ensuring that each thread receives the re-
sponse that matches the given request.

Two implementations of Port exist: SinglePort and PooledPort. SinglePort
allocates a single RegistryChannel instance from the given factory and uses

Knipp RRI Toolkit Page 4/8

DomainData,

ContactData and

Related Classes
+ clearContacts ()
+ addContact ()
+ addContacts ()
+ getContactRefs ()
+ getContacts ()
+ getFirstContact ()
+ clearDnsEntries ()
+ addDnsEntry ()
+ addDnsEntries ()
+ getDnsEntries ()

− role: Role

1 0..*

1 0..*

DomainData ContactData

DnsEntry

Ref

DnsEntryA DnsEntryMX DnsEntryNS

+ getRole (): Role

+ accept (DnsEntryVisitor)

Knipp Medien und Kommunikation GmbH

this for the communication. PooledPort is a more complex implementation. It
manages a pool of multiple connections to the registry. New channels are cre-
ated and discarded as needed. In contrast to SinglePort, PooledPort also per-
forms the login and logout at the registry. If more threads are requesting a com-
munication with the registry than channels are available, the threads are put into
a FIFO queue until a channel becomes available or a new one has been created
and prepared (i.e. a login has been performed).

2.6. Error Handling

The toolkit provides an additional enumeration ErrorType, which simplifies the
handling of the result messages included in the response. For all known error
codes, a corresponding enumeration value exists. The method getErrors allows
to create a set of all error codes that appear in the response. The test method
allows to test for a small set of errors and returns the first matching one. It re-
flects the programming style that typically a certain number of error conditions
are expected and handled (like that the domain is already registered on a
CREATE request) while other errors are handled in a generic way. With the help
of the filter method, the actual ResultMessage instances that contain certain
error codes can be determined. By using the helper classes ErrorPattern (along
with its subclasses) and ErrorMapper, the result messages can be filtered indi-
vidually, e.g. to filter all result messages related to the zone checking as a part of
the error reporting to the user. The use of these classes is optional, the devel-
oper can operate directly on the Response, ResultMessage and ErrorCode
classes if required.

2.7. Inner Working

Several other classes represent the “inner working” of the toolkit. The Codec
class is responsible for the conversion between the Java objects and the binary
representation that is used at the communication level. It contains both all-in-
one methods and methods that perform the conversion steps individually.

Both key-value and XML responses sent by the registry are not completely self-
describing, i.e. just by looking on the response it is not always possible to tell
the type of the originating request. Because of this, the creation of response ob-
jects has not been integrated into the codec, but delegated to a separate inter-
face named ResponseFactory. A default implementation, the singleton
DefaultResponseFactory class, derives the class either from the request object,
or, if it is not available, heuristically by a set of rules.

KVList and KVMultiList are helper classes to store the key-value representation
during the conversion, while the XmlBuilder and XmlHelper classes contain
methods to simplify the creation and parsing of XML documents.

Knipp RRI Toolkit Page 5/8

Knipp Medien und Kommunikation GmbH

3. Using the Toolkit

3.1. Required Steps

To make use of the toolkit, the following steps are required:

• creating a channel factory

• creating a port

• creating and sending requests, receiving and processing responses

• shutting down (optional)

3.2. Creating a Channel Factory

As mentioned above, the toolkit implements a SSL/TLS encrypted TCP connec-
tion to the registry. In the context of SSL/TLS, the toolkit operates as a client. It
has the duty to verify the server certificate it receives from the server. As the test
environment of DENIC uses a self-signed server certificate, you must setup a key
store that contains this certificate and specify this in the configuration of the
TCP connection, otherwise the connection will not be established. The toolkit
also allows the specification of a client certificate, but at the moment, the
DENIC registry does not make any use of it.

The first step is to create an instance of the TcpParams class. While you can
setup the various parameters individually, it contains a convenience method that
takes all parameters from a given Properties instance.

Properties props = new Properties ();
props.load (new FileInputStream ("test.properties"));
TcpParams params = new TcpParams ();
params.setupFromProperties (props, "tcp.");

A typical property file could contain the following data:

tcp.server.name: rri.test.denic.de
tcp.server.port: 51131
tcp.trust.keystore.path: trust.jks
tcp.trust.keystore.password: trustMe
tcp.trust.verifyname: no

Creating the factory:

ChannelFactory factory = new TcpChannelFactory (params);

3.3. Creating a Port

Both Port implementations optionally accept an instance of the Codec class.
This allows the selection between key-value representation and XML representa-
tion on the protocol level, as well as the use of a custom ResponseFactory. If
not specified, a default codec is created that uses XML representation. To create
a port, use:

Knipp RRI Toolkit Page 6/8

Factory Creation

Initialization of a

TcpParams instance

Typical Contents of

the Properties File

Knipp Medien und Kommunikation GmbH

SinglePort port = new SinglePort (factory);

or, alternatively,

PooledPort port = new PooledPort (factory, null, "DENIC-60-USER",
 "myPassword", 0, 1, 10);

For the SinglePort solution, a login has to be performed at first before the port
is actually usable for operation.

3.4. Working with the Port

Once the port has been set up properly, it can be used for doing requests. The
following example shows the query for a given contact:

ContactInfoRequest req = new ContactInfoRequest ("DENIC-60-TEST");
ContactInfoResponse resp = req.execute (port);

if (resp.isSuccess ())
{
 System.out.println (resp.getContact ());

} else
{
 System.out.println (“request failed”);
}

3.5. Shutting Down

The PooledPort implementation has a special method called shutdown that per-
forms a logout and a close on all channels in the pool. The call does not return
before this has been completed, which may take some seconds.

4. Miscellaneous

4.1. Test Class

The Test class currently contained in the distribution is not an official part of the
package. It represents a small command interface which takes command line ar-
guments, creates a request from it and sends it to the registry. Due to its nature
it does not provide much convenience and creates a lot of debugging output.

The first argument must always be the name of a properties file. It must contain
the following properties:

tcp.<key>: <param> see TcpParams.setupFromProperties de-
tails; prefix is "tcp."

user: <username> the user name for the login at DENIC
password: <password> the password for the login at DENIC

Knipp RRI Toolkit Page 7/8

Request Example

PooledPort

SinglePort

Knipp Medien und Kommunikation GmbH

xml: true | yes | no | false if true/yes, data is sent to DENIC in
XML format, if false/no, data is sent to
DENIC in key/value pair format

The second parameter is the name of the request to send to the registry. Use
“help” to view a list of all supported requests and their options.

4.2. DebugChannelFactory & DebugPort Classes

These two classes provide simple means to print the interaction between the ap-
plication and the registry to the console. They are merely for testing purposes.
Similar approaches may be used by the application developer to implement log-
ging or recording of the communication in order to allow a later review in case
of problems.

4.3. Idle TCP Connections

DENIC closes, like other registries, connections that haven’t been used for a
while. Unfortunately, this cannot be detected within Java except by actually read-
ing from or writing to the socket. Additionally, it has been observed that some
firewalls drop their contexts about the connection some time after having moni-
tored the single side close, making them unable to respond to the close of the
client, once it detects the closed host connection. On some client platforms, this
caused the JVM to hang in the close () call for several minutes, until the TCP
stack declared the connection as really closed. This is a no-go for production en-
vironments.

To solve this problem, two measures have been taken. First, the
TcpChannelFactory can be configured to monitor the created connections and
proactively closes those connections that have been idle for a while. To enable
the feature, the setIdleTimeout method has to be called on TcpParams or the
timeout.idle property has to be set for the setupFromProperties method.
Please note that the SinglePort implementation cannot reestablish a connec-
tion by itself, therefore it is not recommended to use it together with the idle
timeout.

The second measure is that the PooledPort does not fail on an I/O exception
during a write attempt to the socket. Instead, it drops the used channel and re-
quests another one from the internal pool until it succeeds. If the pool runs dry,
a new channel is allocated and a login is performed, like under normal condi-
tions. However, if this fails, too, the failure is reported to the caller.

Knipp RRI Toolkit Page 8/8

	1. Introduction
	1.1. Purpose
	1.2. Prerequisites
	1.3. Licensing

	2. Concepts
	2.1. Requests and Responses
	2.2. Message Classes
	2.3. DomainData and ContactData Classes
	2.4. RegistryChannel and ChannelFactory Interface
	2.5. Port Interface
	2.6. Error Handling
	2.7. Inner Working

	3. Using the Toolkit
	3.1. Required Steps
	3.2. Creating a Channel Factory
	3.3. Creating a Port
	3.4. Working with the Port
	3.5. Shutting Down

	4. Miscellaneous
	4.1. Test Class
	4.2. DebugChannelFactory & DebugPort Classes
	4.3. Idle TCP Connections

